# Dombrovski*, Luna, Hallquist*, Nature Communications, 2020
# brain-to-behavior analyses with anterior (low entropy) hippocampal cluster betas
# first run beta_cluster_import_pca_clean.R if not run once already
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
## ✓ tibble 3.0.5 ✓ dplyr 1.0.3
## ✓ tidyr 1.1.2 ✓ stringr 1.4.0
## ✓ readr 1.4.0 ✓ forcats 0.5.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library(lme4)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
library(lmerTest)
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
library(car)
## Loading required package: carData
## Registered S3 methods overwritten by 'car':
## method from
## influence.merMod lme4
## cooks.distance.influence.merMod lme4
## dfbeta.influence.merMod lme4
## dfbetas.influence.merMod lme4
##
## Attaching package: 'car'
## The following object is masked from 'package:psych':
##
## logit
## The following object is masked from 'package:dplyr':
##
## recode
## The following object is masked from 'package:purrr':
##
## some
library(emmeans)
# clock_folder <- "~/Data_Analysis/clock_analysis" #michael
clock_folder <- "~/code/clock_analysis_mlm" #alex
setwd(file.path(clock_folder, 'fmri/keuka_brain_behavior_analyses/'))
### load data
# load('trial_df_and_vhdkfpe_clusters.Rdata')
# cleaner version with only H, PE and uncertainty trial vars
unsmoothed = F
if (unsmoothed) {
load('trial_df_and_vh_pe_clusters_u_unsmoothed.Rdata')
} else { load('trial_df_and_vh_pe_clusters_u.Rdata') }
# inspect behavioral data
# make sure no one always responds immediately
# raw, all subjects and trials
ggplot(df, aes(trial, rt_csv, color = rewFunc)) + geom_line() + facet_wrap(~id)
